个人简介:
姓 名: 肖 航
出 生: 1989年4月
最高学历: 工学博士
职 称 / 职 务: 副教授 / 硕士生导师
通信地址: 西安市太白北路229号,710069;437必赢会员中心
电子邮件: xiaohang07@nwu.edu.cn
教育背景:
2007年9月— 2011年7月,西安交通大学,飞行器设计与工程,本科,导师:陈曦教授
2011年9月— 2013年7月,西安交通大学,工程力学,硕士,导师:陈曦教授
2013年9月— 2017年7月,哥伦比亚大学,地球与环境工程,博士,导师:陈曦教授
工作经历:
2017年9月— 2019年5月,哥伦比亚大学,地球与环境工程,博士后,导师:陈曦教授
2019年6月—今,437必赢会员中心,437必赢会员中心,教学科研岗。
教学工作:
主讲本科过程装备与控制工程专业《复变函数及应用》课程。
研究领域:
(1)借助高通量量子化学计算来预测新型能源材料和新型化工材料,即“算”出新材料;
(2)湿度控制可逆化学反应在CO2空气捕捉领域的应用及其机理研究;
(3)新型二维材料(2D Materials)的理论预测;
(4)二维材料的反应力场(Reactive Force Field)开发。
主持科研项目:
1. 陕西莱特光电材料股份有限公司项目,新型OLED材料的高通量量子化学预测与筛选,200万元,2019.11- 2021.08,在研。
发表代表作要有:
1. Xiao, H.*; Dan, Y.*; Suo, B.; Chen, X. Comment on “Accelerated Discovery of New 8-Electron Half-Heusler Compounds as Promising Energy and Topological Quantum Materials.” J. Phys. Chem. C 2020, acs.jpcc.9b10295. https://doi.org/10.1021/acs.jpcc.9b10295.
2. Shi, X.; Xiao, H.; Azarabadi, H.; Song, J.; Wu, X.; Chen, X.*; Lackner, K. S. Sorbents for Direct Capture of CO2 from Ambient Air. Angew. Chem. Int. Ed. 2019. https://doi.org/10.1002/anie.201906756.
3. Song, J.; Zhu, L.; Shi, X.; Liu, Y.*; Xiao, H.*; Chen, X. Moisture Swing Ion-Exchange Resin-PO 4 Sorbent for Reversible CO 2 Capture from Ambient Air. Energy Fuels 2019, acs.energyfuels.9b00863. https://doi.org/10.1021/acs.energyfuels.9b00863.
4. Liao, X.; Nagakura, T.; Chen, Y.; Zhu, L.; Shi, X.; Yonezu, A.; Chen, X.; Xiao, H.* Tunable Surface Morphology via Patterned Cavities in Soft Materials. Physical Review E 2018, 98 (6). https://doi.org/10.1103/PhysRevE.98.063004.
5. Chen, Y.; Liao, X.; Shi, X.; Xiao, H.*; Liu, Y.*; Chen, X. Three-Dimensional Auxetic Properties in Group V-VI Binary Monolayer Crystals X3M2 (X=S, Se; M=N, P, As). Phys. Chem. Chem. Phys. 2018. https://doi.org/10.1039/C8CP05260C.
6. Liao, X.; Chen, Y.; Nagakura, T.; Zhu, L.; Li, M.; Shi, X.; Yonezu, A.; Xiao, H.*; Chen, X. Unconventional Localization Prior to Wrinkles and Controllable Surface Patterns of Film/Substrate Bilayers through Patterned Cavities. Extreme Mechanics Letters 2018. https://doi.org/10.1016/j.eml.2018.10.009.
7. Ju, D.; Jiang, X.; Xiao, H.*; Chen, X.; Hu, X.; Tao, X.* Narrow Band Gap and High Mobility of Lead-Free Perovskite Single Crystal Sn-Doped MA 3 Sb 2 I 9. Journal of Materials Chemistry A 2018. https://doi.org/10.1039/C8TA08315K.
8. Ju, D.; Zheng, X.; Liu, J.; Chen, Y.; Zhang, J.; Cao, B.; Xiao, H.*; Mohammed, O. F.; Bakr, O. M.*; Tao, X.* Reversible Band Gap Narrowing of Sn-Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angewandte Chemie International Edition 2018, 0 (ja). https://doi.org/10.1002/anie.201810481.
9. Xiao, H.; Shi, X.; Zhang, Y.; Li, M.; Liao, X.; Chen, X. Predicting a Two-Dimensional P2S3 Monolayer: A Global Minimum Structure. Computational Materials Science 2018, 155, 288–292. https://doi.org/10.1016/j.commatsci.2018.08.061.
10. Hao, F.; Liao, X.; Li, M.; Xiao, H.*; Chen, X. Oxidation-Induced Negative Poisson’s Ratio of Phosphorene. J. Phys.: Condens. Matter 2018. https://doi.org/10.1088/1361-648X/aacfd1.
11. Chen, Y.; Shi, X.; Li, M.; Liu, Y.*; Xiao, H.*; Chen, X. Strain and Defect Engineering on Phase Transition of Monolayer Black Phosphorene. Physical Chemistry Chemical Physics 2018. https://doi.org/10.1039/C8CP01334A.
12. Chen, Y.; Xiao, H.; Liu, Y.*; Chen, X.* Effects of Temperature and Strain Rate on Mechanical Behaviors of Stone–Wales Defective Monolayer Black Phosphorene. J. Phys. Chem. C 2018, 122 (11), 6368–6378. https://doi.org/10.1021/acs.jpcc.7b11494.
13. Xiao, H.; Shi, X.; Liao, X.; Zhang, Y.; Chen, X.* Prediction of a Two-Dimensional S3N2 Solid for Optoelectronic Applications. Phys. Rev. Materials 2018, 2 (2), 024002. https://doi.org/10.1103/PhysRevMaterials.2.024002.
14. Liao, X.; Xiao, H.; Lu, X.; Chen, Y.; Shi, X.; Chen, X.* Closed-Edged Bilayer Phosphorene Nanoribbons Producing from Collapsing Armchair Phosphorene Nanotubes. Nanotechnology 2018, 29 (8), 085707. https://doi.org/10.1088/1361-6528/aaa52d.
15. Xiao, H.; Shi, X.; Zhang, Y.; Liao, X.; Hao, F.; S Lackner, K.; Chen, X.* The Catalytic Effect of H2O on the Hydrolysis of CO32- in Hydrated Clusters and Its Implication to the Humidity Driven CO2 Air Capture. Physical Chemistry Chemical Physics 2017. https://doi.org/10.1039/C7CP04218C.
16. Xiao, H.; Shi, X.; Hao, F.; Liao, X.; Zhang, Y.; Chen, X.* Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene. J. Phys. Chem. A 2017, 121 (32), 6135–6149. https://doi.org/10.1021/acs.jpca.7b05257.
17. Xiao, H.; Shi, X.; Chen, X.* Self-Assembled Nanocapsules in Water: A Molecular Mechanistic Study. Phys. Chem. Chem. Phys. 2017. https://doi.org/10.1039/C7CP02631E.
18. Shi, X.; Xiao, H.; Chen, X.*; Lackner, K. S.* The Effect of Moisture on the Hydrolysis of Basic Salts. Chemistry - A European Journal 2016, 22 (51), 18326–18330. https://doi.org/10.1002/chem.201603701.
19. Shi, X.; Xiao, H.; Lackner, K. S.*; Chen, X.* Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration. Angew. Chem. 2016, 128 (12), 4094–4097. https://doi.org/10.1002/ange.201507846.
20. Xiao, H.; Chen, X.* A Mechanical Model of Overnight Hair Curling. Eur. Phys. J. E 2015, 38 (9),1-8. https://doi.org/10.1140/epje/i2015-15095-2.
21. Xiao, H.; Chen, X.* Modeling and Simulation of Curled Dry Leaves. Soft Matter 2011, 7 (22), 10794-10802. https://doi.org/10.1039/C1SM05998J.
课题组主页:https://xiaohang007.github.io/